THROTTLE ORIFICE TO-F AND TO-M SERIES

FEATURES

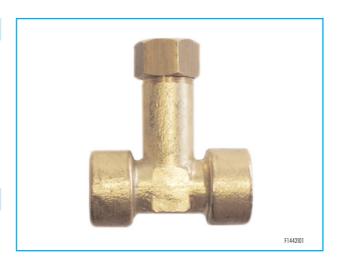
Valve body: brassValve seat: brassShutter: brass

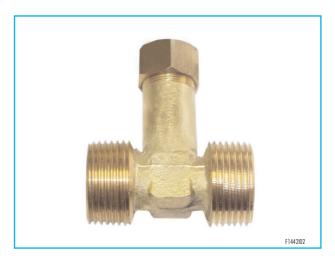
Seal cap

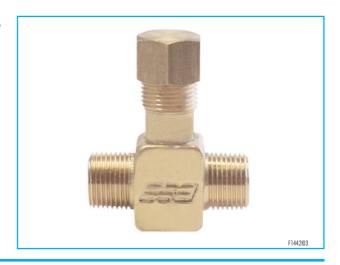
Max. operating pressure: 3 bar
Max. operating temperature: -30°C + 180°C

APPLICATIONS

- Manual adjustment valve even at reduced flows.
- Non sealing valve.
- Recommended for non-corrosive gases such as natural gas, L.P.G., air, nitrogen etc.

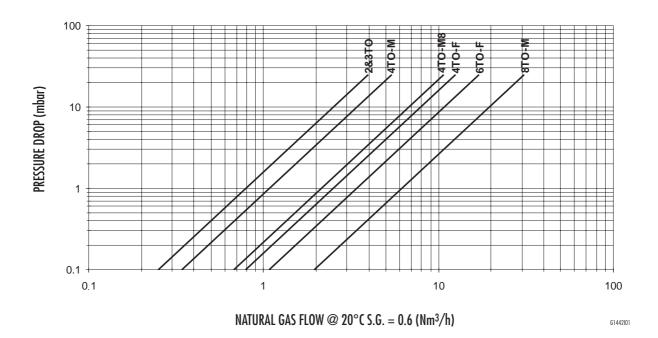

DESCRIPTION

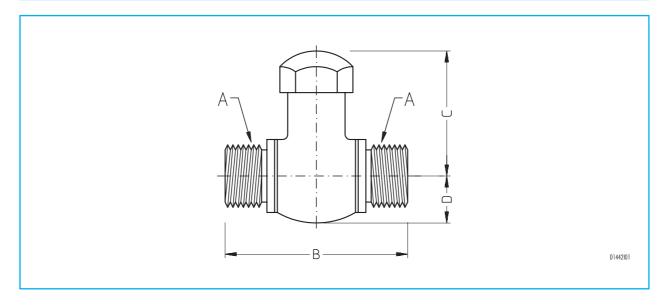

The 1442-TO-F and TO-M throttle orifices are designed to provide an accurate flow control. The conical needle or cylindrical plug valve has a micrometer type screw thread adjusting stem and allows excellent adjustment possibilities even at reduced flows.


A TO-F and TO-M can be accurately adjusted with a screwdriver. A seal cap protects the adjustment preventing leakage.

INSTALLATION

- Throttle orifices may be mounted to operate in any position.
- It is recommended to mount adjusting valves downstream of any measuring device.
- Robust design ensures extended operation in extreme conditions.





CAPACITY TABLE

DIMENSIONS

Catalog no.	ø A NPT	B mm	C mm	D mm	Orifice Dia mm	CV	Mass kg
2 TO-M	1/4″ M	46	36	12	5	0.7	0.100
3 TO-M	3/8″ M	46	36	12	5	0.7	0.110
4 TO-M	1/2″ M	46	36	12	6	0.98	0.130
4 TO-M8	1/2″ M	46	36	12	8	2	0.120
4 TO-F	1/2" F	64	51	13	8	2.3	0.260
6 TO-F	3/4" F	64	51	17	10	3.2	0.300
8 TO-M	1″ M	64	51	16	12	5.7	0.350

 $\mathbf{M} = \mathbf{Male\ threads}$

F = Female threads

